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In many-particle systems, the void space (the space not occupied by the particles themselves)
is of great interest because of its rich topological features and because it is key in determining
the macroscopic properties of the system. Unfortunately, the complex shape and connectedness
properties of the void space make precise measurements of quantities that characterize it very
difficult, and such measurements must often be made by crude sampling techniques. In this paper we
present a method by which void characteristics in random systems of disks can be calculated exactly,
in principle. This procedure allows us to compute with very high precision “void” nearest-neighbor
distribution functions over a wide range of disk densities. A comparison of these nearest-neighbor
measurements to recent theoretical predictions reveals that the predictions are highly accurate.

PACS number(s): 61.20.—p, 05.20.—y

I. INTRODUCTION

Systems of D-dimensional hard spheres have been of
great interest to scientists in modeling a variety of many-
particle systems. A major reason for this is that the
structure of many-particle systems is primarily deter-
mined by repulsive interactions at appreciable densi-
ties, irrespective of attractive interactions that may be
present. The special case of D = 3 has been studied in
detail due to its use as a model of liquids [1-3], glasses
[4,5], particulate composites [6], and powders [7], to men-
tion a few examples. However, the case of D = 2 (hard
disks) has also been shown to be of interest as a model of
fiber-reinforced composites [8], thin films [9], and other
systems in which the particles have a circular cross sec-
tion when projected onto a plane. The case of disks also
provides a means of testing various mathematical formu-
las that might not be as tractable in higher dimensions.
For these reasons, the present paper focuses on charac-
terizing hard-disk as well as overlapping-disk systems.

One aspect of the hard-disk system that is especially
interesting is the void region, which is just defined as
the region exterior to the space occupied by the disks.
While the disk space is easily described by a collection of
particle centers and radii, the void region is much more
complicated to characterize since there are many length
scales associated with it. The description becomes even
more complicated if one considers not completely hard
disks, but disks with hard cores and regions outside the
cores which can overlap (the cherry-pit model [10]), or
even completely penetrable disks. In this case, portions
of the void space may become disconnected, and one now
needs to incorporate this topological information in a de-
scription of the void space.

Typical quantities associated with the void space that
are of physical interest include the void nearest-neighbor
functions [2,11], the number of disconnected void regions,
and the precise shape of these void regions. Such quan-
tities have traditionally been calculated using a Monte
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Carlo sampling method. However, this method works
rather poorly when the space to be sampled from is very
small. This is often the case when one is studying the
void space in a dense system, especially systems in which
the particles can partially or completely overlap, or if one
is looking at the sites in the void which lie in a shell of
distance r + dr around a particle. As an example, con-
sider a sampling trial which has probability of success
€. For m trials, the expected number of successes is me,
but the relative error associated with that expectation is
1/4/me. For ¢ = 1078 (not at all unreasonably small),
one would require 10® samples for the relative error in
the calculation to be 10%.

Another reason to study the void space in random sys-
tems of particles is that Torquato, Lu, and Rubinstein
(TLR) [11] have shown that the particle nearest-neighbor
distribution functions can be easily related to similar dis-
tribution functions for the void quantities. Even if the
particle quantities were more relevant to a particular sit-
uation, calculation of the void quantities often yields a
more accurate result, especially for larger distances. This
is due to the fact that there is an inherent limit in the ac-
curacy of the particle functions due to the fact that there
is a finite (and often small) number of particles in the
system of interest. The void space, however, effectively
contains a higher dimensionality of sampling points, and
the statistics for the void quantities could possibly be
much better than the particle quantities for that reason.

Clearly, a better method than random sampling is
needed to study the void spaces associated with these
systems. There have been some cases where the void
spaces have been approximated by polygons [12] and cir-
cles [13], with varying degrees of success, but ideally one
would like to be able to calculate quantities associated
with the void distribution functions ezactly given a sys-
tem of sphere centers and radii. An earlier paper by
Hoover et al. [14] outlines a means for doing such a cal-
culation, but mentions that it fails in certain situations.

In this paper we present a simple and straightforward
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algorithm to ezactly calculate the void-space features. To
illustrate the utility of the algorithm, we compute the
aforementioned nearest-neighbor distribution functions
for random arrays of disks. Owur results are compared
to a recently derived set of analytical approximations for
the nearest-neighbor distribution functions.

II. CHARACTERIZATION OF THE VOID SPACE

The method described here is an extension of that em-
ployed by Speedy and Reiss [15], and is very similar to
that used by Hoover et al. [14]. However, the area is
calculated in a somewhat different way, and an explicit
description of the formula used to calculate the area is
given.

We will first consider a situation in which the particles
could partially or completely overlap, such as the cher-
rypit [10] model, at very high densities. In this case, the
void regions will be completely disconnected and each
section of the void will consist of a piecewise continu-
ous closed curve as shown in Fig. 1. This curve can be
thought of as a surrounding polygon with curved areas
removed at each edge corresponding to a segment of a
disk. The area of this figure is very easily calculated by
first calculating the area of the polygon, and then sub-
tracting out the various circular segments. The area of
the polygon could be calculated by breaking the area up
into triangles, but instead we use a theorem of Cartesian
geometry which tells us that for a polygon with m ver-
tices at coordinates (z;,y;), the area A of the polygon is
given by

1 m
A= 3 ;(531'—1% — Yi-1%;), (1)

where o = z,, and Yo = Ym, and the vertices are taken in
order in a counterclockwise direction. If the vertices are
taken in a clockwise direction one just gets —A. This can-
not be directly compared to the method used by Hoover
et al. [14] since the formula used to compute the area was

FIG. 1. Sample void (colored white) surrounded by disks
(colored black). The polygon formed by the edges is also
shown as the white dotted line.
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not explicitly stated.

One can now calculate the area of all of the void regions
in this dense system by identifying every edge of a sphere
which does not lie inside of another disk and constructing
the curves generated by connected sets of these edges.
To ensure that you are always traversing the voids in a
counterclockwise manner, it is necessary only to store the
circular edges in a clockwise manner, and then connect
up the end of one edge to the beginning of the next.

Now suppose one has a situation as in Fig. 2. In this
case, there is an isolated cluster of disks within a void
region. However, if we just follow the recipe given above,
we will calculate the total area of the void space (as if
the inner cluster did not exist) by traversing the edges
of the outer shell. We will also construct a curve formed
by edges of the inner cluster, only this time if we have
been traversing the original disks in a clockwise manner,
we will traverse the inner figure in a clockwise manner,
and get a negative value for the area. As long as the
circular segments also change sign, they will add to the
area, instead of subtracting from it. This will be sub-
tracted from the area calculated for the first calculation,
and we will be left with the true area of void space, with-
out having to treat that case any differently. This same
argument applies to any level of nesting clusters within
other clusters. It should be noted that this algorithm will
calculate the two disk cluster correctly, since the area of
the polygon will be 0, but the two circular segments will
add up to be the correct area. Similarly, for one isolated
disk, one again gets the correct answer if one considers
the segment of the circle to subtend an angle of 2.

Finally, one needs to consider the boundary conditions
associated with the system. Usually, one chooses periodic
boundary conditions to best reduce edge effects. If there
is one cluster that percolates through the system in both

FIG. 2. Example of a cluster of disks contained within a
void. The arrows all move around the individual disks in a
clockwise direction, and therefore traverse the void and the
isolated cluster in different directions.
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directions, then the algorithm needs no modifications, as
all void space will be bounded by disks. If, however,
there is no percolating cluster in either direction, then
the algorithm is only calculating the area of all of the
clusters, and this total result (which will be negative)
must be added to the total area of the box to get the
area of the void space.

Percolation in one direction presents a problem, as the
segments on each of the clusters that percolate in one di-
rection do not form a closed curve, but instead form two
open curves (corresponding to either side of the cluster)
which simply move across the box for one box length. In
the work of Ref. [14], the simulation simply stopped when
this occurred, and, as a result, these authors were unable
to get good results for densities when this occurred. We
have solved this problem by “cutting” the cluster and
having the curve trace through it, and treating this as a
nonpercolating case. This is most easily done by identi-
fying the cluster which percolates in one direction (along
with the direction) and subjecting it to free boundary
conditions in the direction of percolation. Care must be
taken in this case to properly keep track of the length and
number of the true disk edges. It should also be noted
that in the case of periodic boundary conditions one must
be sure to use absolute coordinates when measuring the
area of the polygon, or the results will be incorrect if
a cell boundary is crossed. If free boundary conditions
are used, one just needs to be careful to treat the edges
which lie along the side of the box differently than the
edges which lie along the other disks, if the particles are
]

Hy (r)dr = probability that at an arbitrary point in the system the center of
the nearest particle lies at a distance between r and r + dr,
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allowed to overlap the edge. In this paper, only periodic
boundary conditions were used.

Using the method described here, one can now calcu-
late any of the void quantities of interest. Not only is the
total area known, but the size and shape of all of the in-
dividual sections which comprise the void space are also
known. Moreover, the total length of all of the edge seg-
ments is just the surface area of the void. Knowledge
of these values can be used to calculate almost any in-
formation that one requires about the void space. It is
also important to note that this method can be used for
disks with a distribution of radii and not just systems of
equal-sized disks, although only the latter is considered
here as an example.

III. NEAREST-NEIGHBOR FUNCTIONS:
THEORY

As an application of the algorithm, we will calcu-
late precisely the void nearest-neighbor distribution func-
tions Hy (r), Ev(r), and Gy (r) as well as the “particle”
nearest-neighbor functions Hp(r), Ep(r), and Gp(r) as
defined by Torquato et al. for random distributions of
disks at number density p. We note that the void quan-
tities are identical to the ones first introduced by Reiss,
Frisch, and Lebowitz [2] in their scaled-particle theory.

The nearest-neighbor quantities have been defined in
any space dimension, but for concreteness we define them
for two dimensions as follows.

(2)

Hp(r)dr = probability that at an arbitrary disk center in the system the center 3)
of the nearest disk lies at a distance between r and r + dr,
Ey(r) = probability of finding a region which is a circular cavity of radius 4)
r (centered at some arbitrary point), empty of disk centers,
Ep(r) = probability of finding a region which is a circular cavity of radius (5)
r (centered at some arbitrary disk center), empty of disk centers,
2nrpGy (r) = probability that, given a region which is a circular cavity of radius
r that is empty of particle centers, particle centers are contained (6)
in the shell of area 27r dr encompassing the cavity,
2rrpGp(r) = probability that, given a region which is a circular region of radius

r centered on an abitrary disk that is empty of any other particle )
centers, particle centers are contained in the shell of area 27rdr

encompassing the cavity.

The fraction of the space occupied by the disks is denoted
by ¢. (In the special case of nonoverlapping or hard disks,
¢ = pmo? /4. If the disks can overlap, then ¢ < pro2/4.)

It is important to note that the nearest-neighbor func-

f

tions have alternative, and useful interpretations. In D
dimensions, the value of Ev(r) is just the fraction of
space available to a test particle of radius r —o /2 inserted
into the system, and Hy (r) is just the surface area per
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unit volume of the interface between the available and un-
available spaces [11,16]. In two dimensions in particular,
Ey and Hy are just the area fraction and perimeter per
unit area, respectively, of the portion of the void space
that remains when each of the actual disks of radius o /2
is surrounded by a disk of radius r. We can divide up
this remaining void space into distinct connected regions,
which we will refer to as “cavities.”

For values of ¢ below the value of the percolation
threshold of the actual disk system, there will always
be one large cavity which percolates through the entire
system when the surrounding disk is the same size as the
actual disk. [For the special case of the hard-disk system,
there will only be one large cavity since the nonoverlap
condition forbids the formation of any localized (i.e., dis-
connected) cavities.] However, as the surrounding disks
are added to the actual disks, the surrounding disks be-
gin to form larger connected “clusters,” and more parts
of the void become disconnected. For large enough val-
ues of r, the clusters formed by the surrounding disks
will percolate through the system. In two dimensions,
this implies that the void system will no longer perco-
late, and will consist of small, isolated cavities.

We can now define further quantities of interest related
to the cavities. Let n(r) represent the average cavity
density (number of cavities per unit area) for a system
of disks in which each actual disk of radius ¢ /2 is sur-
rounded by a disk of radius r. Moreover, let v(r) and
s(r) be the average cavity area and perimeter, respec-
tively. We can now write

n(r)v(r) = Ev(r), (8)
n(r)s(r) = Hy (r). (9)

For values of r in which a large cavity percolates through
the entire system, v(r) and s(r) will be “extensive” quan-
tities. However, as r gets larger, the void region be-
comes disconnected, and the quantities become “inten-
sive.” Speedy [17] has shown that the equation of state
for a hard-sphere system in D dimensions can be written
in terms of v(o) and s(o).

The nearest-neighbor quantities are all interrelated for
D-dimensional sphere systems. The value of Ey (p)(r)
can be calculated from Hy (p)(r) by the formula

,
Ey@py(r) =1 —/ Hy (p)(x) dz, (10)
0
and conversely, one can write
—0F r
Hy(ryr) = —2200). 1)

Finally, Gy (p)(r) can be written in terms of Ey (py(r)
and Hy (p)(r) as

HV(p)(’l") = pzﬁer(P)(T)Ev(p)('r), (12)

which allows Ey (p)(r) to be written solely in terms of
Gv(p) (’I‘) as

Ey(p)(r) = exp (* /OT p2my Gy (p)(y) dy) - (13)
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Torquato et al. [11] have derived exact series represen-
tations of all of the nearest-neighbor quantities for D-
dimensional interacting spheres in terms of the probabil-
ity density p,(r1,...,r,) which characterizes the proba-
bility of finding n spheres with positions ry,...,r,. For
general potentials, p, is not obtainable exactly for n > 2.

A. Overlapping disks

For spatially uncorrelated disks (Poisson distributed
centers) or fully overlapping disks (one of the extreme
limits of the cherrypit model), p, = p™ and the afore-
mentioned series representation can be evaluated exactly
[11] as

Hy (p)(r) = p2nr exp(—pnr), (14)
Evy(p)(r) = exp(—pnr), (15)

The area fraction ¢ occupied by the overlapping disks is
given by

¢=1—Ey(s/2) =1—exp (— "’;"2) . (17)

B. Hard disks

In the case of hard disks, an exact evaluation of the
nearest-neighbor functions is not possible for reasons al-
ready given. In the region r < ¢/2, the void quantities
are known exactly to be

Ey(r) =1 — pnr? (0<r<a/2), (18)
Hy (r) = p27r (0<r<o0/2), (19)
Gy (r) = 1—_—;? 0<r<a/2). (20)

In this case, the area fraction occupied by the disks is
given by

¢ =1—Ey(0/2) = pro? /4. (21)

Clearly, in the hard-core regions, the particle quantities
are given by

Ep(r)=1 (0<r<o), (22)
Hp(r)=0 (0<r <o), (23)
Gp(r)=0 (0<r<o). (24)

Torquato et al. found that for a statistically homoge-
neous system of D-dimensional hard spheres in equilib-
rium, the void and particle quantities could be related
for r > o:

Er() = ey (20, (25)
He(r) = o) (), (26)

and



52 ALGORITHM TO COMPUTE VOID STATISTICS FOR RANDOM . ..

Gp(r) = Gy (r) (r > o). (27)
Roughly speaking, an equilibrium distribution of hard
spheres is the most random distribution subject to the
impenetrability constraint.

Torquato [18] has recently derived approximate expres-
sions for the particle quantities for hard disks in equilib-
rium in the region r > o. Two different sets of relations
were derived: one valid up to the freezing point [19] and
the other valid from freezing up to random close packing.
In the present paper we will simulate hard-disk systems
up to the freezing point. The analytical expressions [18]
that are valid up to freezing are given by

Gv(p)(z) = ao + % (z>1), (28)

Ep(z) = exp{—¢[4ao(z* — 1) + 8a;(z — 1)]} (z >1),

(29)
Hp(z) = 8¢(aox + a1)Ep(x) (x>1), (30)
where z =r /0o,
_ 1+0.128¢
S ey
and
_ —0.564¢
a; = =2 (32)

Analytical approximations for the void quantities
Evy(r) and Hy (r) can also be calculated from Egs. (12),
(13), and (28) with the results

Ev(z) = (1 — ¢) exp [—¢(4aoz® + 8a1x + az)]
(z>3) (33)

Hy(z) = 8¢(1 — ¢)(aoz + a1)

X exp [~¢(4a0w2 + 8a1T + az)] (z > %),
(34)
where
ags = —(ao -+ 4a1). (35)

Similarly, one can also test the above particle nearest-
neighbor functions by measuring the void quantities and
scaling the measured values of Ey(r) and Hy(r) by
EV (O‘)

IV. SIMULATION DETAILS

In order to test the previous analytical expressions it
is necessary to simulate systems of equilibrium disks and
measure either the void or particle quantities. For small
values of ¢, this can be done via sampling methods. How-
ever, Monte Carlo (MC) sampling [20] has the disadvan-
tage mentioned previously that the error associated with
the result goes as m~1/2, where m is the number of sam-
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ples. This decreases very slowly as a function of m. Also,
the value of Ey(z) [or Ep(z)] becomes very small very
quickly for z > 1 as ¢ becomes larger. This causes the
sampling method to become prohibitively time consum-
ing in this region. This is especially relevant for the cal-
culation of Gy (p)(z) as the factor of Ey (p)(x) appears
in the denominator of the expression for Gy (p)(z) as a
function of Ev (p)(z) and Hy (p)(z). It is important to be
able to test these expressions for large values of ¢ since
this is the more difficult region to describe theoretically.
In this region, the impenetrability condition is expected
to play the largest role.

The values of Evy (r) and Hy (r) can be easily obtained
via the algorithm described earlier by the physical inter-
pretation of the two quantities as being the area fraction
and perimeter per unit area of the void space remaining
when the actual disk centers are surrounded by disks of
radius r. One can now get the full range of values for
r by surrounding the actual disks with larger and larger
circles, measuring the void space, and repeating until no
voids remain.

In the case of totally hard disks, data were generated
for each value of ¢ in the following manner. First, disk
centers were laid down on a cell (with periodic bound-
ary conditions) without regard to overlap. Then, each
disk was chosen sequentially and checked to see if it over-
lapped other disks. If it did overlap, attempts were made
to move it to reduce overlap. If it did not overlap, an
attempt was made to move it using a MC type algo-
rithm, which the nonoverlapping condition strictly en-
forced. This was done until there was no overlap, and
then the entire system was equilibrated using a MC pro-
cedure, where the step size was chosen to make the ac-
ceptance rate close to 50%. There were 10000 steps per
particle attempted during the equilibration procedure.
We chose to use the random starting points (without re-
gard to overlap) rather than melting a crystal since some
of the densities used were close to the freezing density,
and we have noticed that correlations associated with the
initial crystal structure can persist after very long time
scales.

After the system was equilibrated, Ev (r), Hy (), n(r),
v(r), and s(r) were measured for the system, and the sys-
tem was then evolved using the MC algorithm described
previously with 50 steps per particle attempted. This
procedure was repeated with those same quantities being
measured after each set of MC evolutions. Finally, these
procedures were averaged over many different initial con-
figurations. The values calculated for Gy (r) are calcu-
lated from the final average of Hy (r) and Ev(r), and

TABLE I. Simulation parameters used for each value of ¢.
In the table, N is the number of particles in each sample.
Each configuration was evolved for 50 MC move attempts per
particle between samples.

@ N Samples per configuration  Configurations
0.30 10000 50 15
0.50 5000 50 25
0.65 5000 50 50
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TABLE II. Theoretical and measured values of Ev (r) for the case of fully penetrable (Poisson
distributed) disks, where ¢ = 1 — exp(—0.5) ~ 0.393.

By (r)

r/o theory Measured Difference
0.100000 0.980198673 0.980195141 3.5315x10°°
0.500000 0.606530660 0.606582577 —5.1917x107°
1.000000 0.135335283 0.135780606 —4.4532x107*
1.500000 0.011108996 0.011309312 —2.0032x10™*
2.000000 0.000335462 0.000364083 —2.8621x107°

are not an average over a Gy (r) calculated for each in-
dividual configuration. Specific values of the parameters
for each value of ¢ are given in Table I. The correspond-
ing particle quantities were also calculated at the same
time that the void quantities were calculated. However,
in this case only Hp(r) was calculated. This was done
by binning the nearest-neighbor distance associated with
each particle in the system. Then, Ep(r) was calculated
by numerically integrating Hp(r) after all of the data for
Hp(r) had been collected. Then Gp(r) was calculated
from Hp(r) and Ep(r).

The nearest-neighbor void quantities were also mea-
sured for fully penetrable disks. In this case, 50 configu-
rations of 5000 particles were used, with no equilibration.
Ey(r) and Hy (r) were measured for each configuration,
and then averaged over the 50 configurations. The value
of Gy (r) was then calculated from the final values of
Ey(r) and Hy(r).

The accuracy of the method was checked in three dif-
ferent ways. First, the void quantities were also mea-
sured using random sampling techniques, and found to
give values similar to the ones computed with the method
described above. Also, regular arrangements of disks
in which the answers were analytically known were also
measured, and the values were found to correspond to the
analytical values (up the the precision of the computer).
These regular arrangements included disks which did not
percolate, percolated in one direction, and percolated in
both directions. Finally, Ey(r) was also calculated for
selected random systems by using Eq. (10) and integrat-
ing the values of Hy (r) which are easily computed. This
was compared to the direct measurement of Ey (r) and
found to be very close.

V. RESULTS
A. Fully penetrable spheres

Since the theoretical results for the fully penetrable
system are exactly known, the only discrepancies between
the measured data and the theory should be due to fluc-
tuations associated with choosing the random particle
centers and finite size effects from the periodic boundary
conditions. Thus this model serves as an excellent bench-
mark to test the accuracy of our algorithm. For the 5000
particle system, the effects of the periodic boundary con-
ditions should be very small, and the statistical fluctu-
ations associated with averages over many 5000 particle

systems should also be small. Table II shows a theoreti-
cal and measured value for Ey (r) for various values of r,
where the reduced number density of spheres is given by
pmo?/4 = 0.5. This corresponds to a disk area fraction
of ¢ =1 — exp(—0.5) = 0.393. The extreme precision of
the measured results was a further confirmation that the
method worked properly.

B. Comparison to the theoretical predictions

We give nearest-neighbor results for hard disks in equi-
librium here. The data are checked against Egs. (28),
(33), and (34) to test their accuracy. Figure 3 shows the
results for Ey (r) plotted along with Eq. (33) against r/o.
The theoretical prediction gives a very good approxima-
tion to the measured values, even for large values of r and
¢. A magnified version of this plot is shown in Fig. 4,
showing the accuracy of the prediction for the larger val-
ues of 7. The measured values of Hy (r) are plotted along
with the theoretical values from Eq. (34) in Fig. 5 and
these too show a very strong agreement.

The case of Gy (r) is more interesting and is shown in
Fig. 6. Although the simulation results and the theory
results match very closely for ¢ = 0.30 and ¢ = 0.50,
the value of Gy (r) for ¢ = 0.65 is significantly different

0.8

E,(r/o)

05 1.0 15 2.0
r/c

FIG. 3. Equation (33) (shown as lines) compared to simu-
lation values of Ev (r) (shown as points) for various values of

®.
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FIG. 4. Same as Fig. 3, except that the y axis is greatly
enlarged to show details for larger values of r.

than the theoretical prediction for values of » > o. This
is due to the fact that in the simulations there are a
statistically insignificant number of voids which contain
areas that lie more than a distance of o away from the
nearest particle center (or equivalently, the area in which
one could insert a test particle of radius o/2); Gy (r)
examines the rate of change of the size of these voids. In
this case, Gp(r), which is equivalent to Gy (r) for r > o,
is a better quantity to measure in the simulations.

C. Comparison of void and particle quantities

Figure 7 shows a plot of Ep(r) and Evy(r)/Ev (o) for
r > 0. A close look at the data shows that although
the equality of Eq. (25) clearly holds for these values,
the data for Ev(r) generally show much less fluctua-

lation values of Hy (r) (shown as points) for various values of
é.

FIG. 6. Equation (28) (shown as lines) compared to simu-
lation values of Gy (r) (shown as points) for various values of
é.

tion. This was also true in comparisons of Hp(r) ver-
sus Hy(r)/Hy (o) and Gp(r) versus Gy (r). The parti-
cle quantities have the disadvantage that there are larger
fluctuations in the data due to the relatively small num-
ber of sample points associated with each system. Fur-
thermore, these points must be “binned” and are subject
to the normal errors associated with the binning process.
This points out an example of how the void statistics can

be used to more accurately determine quantities related
to the particle statistics.

D. Average density, area, and perimeter of voids

The average number of cavities per unit area, n(r), is
plotted in Fig. 8 as a function of the size of the surround-
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Ev(r)/Ev (o) (shown as points) for various values of ¢.
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FIG. 8. Simulation values of n(r) for a system of unit area
and 5000 disks.

ing imaginary disk. This quantity increases very sharply
for the densest system as the largest void quickly breaks
up into many smaller voids. Figure 9 shows the behavior
of v(r) as a function of the ratio of the surrounding disk
of radius r to the actual disk radius o/2, in the region
where the void does not percolate and v(r) is intensive.
The percolation threshold was calculated for each system
by comparing it to the equivalent cherrypit model [21,22],
and calculating the threshold for that model. The graph
shown is shown only for ¢ = 0.3, since the scales for each
of the three different densities are significantly different.
However, all three values of ¢ show the same qualitative
behavior. Although we obtained v(r) through a direct
calculation, it could have also been obtained from Evy (r)
(Fig. 3) and n(r) via relation (8). Similarly, the perime-
ter s(r) can now be obtained from the results given in
Fig. 8 and our results for Hy (r) (Fig. 5).

VI. CONCLUDING REMARKS

We have explicitly described a method by which void
statistics in random disk systems can be calculated ex-
actly. By using this method, we are able to greatly im-
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FIG. 9. Simulation values of v(r) for a system of unit area
and 5000 disks for ¢ = 0.30. Only the region where v(r) is
intensive is shown, i.e., area fractions above the percolation
threshold of the equivalent cherrypit system [21,22].

prove the precision with which most quantities related
to the void space can be measured. Furthermore, we
are able to compute precisely nearest-neighbor correla-
tion functions associated with the void space and show
that important nearest-neighbor particle functions can be
measured more precisely by studying the void quantities.
Although the examples presented here consisted of equal-
sized disks, the method can be completely generalized to
disks having any size distribution.

The calculation of the nearest-neighbor quantities is
just one example of the utility of the numerical tech-
nique presented here. The algorithm can be applied
as well to compute (1) the precise shape and number
of sides of cavities in the hard-disk equilibrium system;
(2) corresponding void statistics for the nonequilibrium
random-sequential-addition process [13] for hard disks;
and (3) void characteristics of experimental systems such
as monolayers of small colloidal systems. We plan to ad-
dress all of these issues in future papers.
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